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Abstract—Large-scale distributed systems provide an attractive scalable infrastructure for network applications. However, the 
loosely coupled nature of this environment can make data access unpredictable, and in the limit, unavailable. We introduce the 
notion of accessibility to capture both availability and performance. An increasing number of data-intensive applications require not 
only considerations of node computation power but also accessibility for adequate job allocations. For instance, selecting a node 
with intolerably slow connections can offset any benefit to running on a fast node. In this paper, we present accessibility-aware 
resource selection techniques by which it is possible to choose nodes that will have efficient data access to remote data sources. 
We show that the local data access observations collected from a node’s neighbors are sufficient to characterize accessibility for 
that node. By conducting trace-based, synthetic experiments on Planet Lab, we show that the resource selection heuristics guided 
by this principle significantly outperform conventional techniques such as latency-based or random allocations. The suggested 
techniques are also shown to be stable even under churn despite the loss of prior observations. 

 
Keywords—Data Accessibility, resource selection, passive network performance estimation, data-intensive computing, large-scale 
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1   INTRODUCTION 

LARGE-SCALE distributed  systems  provide  an  attractive 
scalable  infrastructure  for  network  applications.  This virtue 
has  led  to  the  deployment  of  several  distributed systems in 
large-scale, loosely coupled environments such as peer-to-peer 
computing [1], distributed storage systems [2], [3], [4], and 
Grids [5], [6], [7]. In particular, the ability of large-scale 
systems to harvest idle cycles of geographically distributed  
nodes  has  led  to  a  growing  interest  in  cycle-sharing 
systems [8] and @home projects [9], [10]. However, a major 
challenge in such systems is the network unpredictability and 
limited bandwidth available for data dissemination. For 
instance, the BOINC project [11] reports an average throughput 
of  only  about  289  Kbps,  and  a  significant proportion of 
BOINC hosts shows an average throughput of less than 100 
Kbps [1]. In such an environment, even a few megabytes of data 
transfer between poorly connected nodes can   have   a   large   
impact   on   the   overall   application performance.  This  has  
severely  restricted  the  amount  of data   used   in   such   
computation   platforms,   with   most computations taking 
place on small data objects. 

 
Emerging scientific applications, however, are data-

intensive and require access to a significant amount of 
dispersed data. Such data-intensive applications encompass a 
variety of domains such as high-energy physics [12], climate 
prediction [13], astronomy [14], and bioinformatics [15]. For 
example, in high-energy physics applications such as the 
Large Hadron Collider (LHC), thousands of physicists 
worldwide will require access to shared, im-mutable data at 
the scale of pet bytes [16]. Similarly, in the area of 
bioinformatics, a set of gene sequences could be transferred 
from a remote database to enable comparison with 

 

 
 
 

 
 
Input sequences [17]. In these examples, performance depends 

critically on efficient data delivery to the computational nodes. 
Moreover, the efficiency of data delivery for such applications 
would critically depend on the location of data and the point of 
access. Hence, in order to accommodate data-intensive 
applications in loosely coupled distributed systems, it is essential 
to consider not only the computational capability, but also the 
data accessibility of computational nodes to the required data 
objects. The focus of this paper is on developing resource 
selection techniques suitable for such data-intensive applications 
in large-scale computational platforms. 
 
 

Data availability has been widely studied over the past few 
years as a key metric for storage systems [2], [3], [4]. However, 
availability is primarily used as a server-side metric that ignores 
client-side accessibility of data. While availability implies that at 
least one instance of the data is present in the system at any given 
time, it does not imply that the data are always accessible from 
any part of the system. For example, while a file may be available 
with 5 nines (i.e., 99.999 percent availability) in the system, real 
access from different parts of the system can fail due to reasons 
such as misconfiguration, intolerably slow connections, and other 
networking problems. Similarly, the availability metric is silent 
about the efficiency of access from different parts of the network. 
For example, even if a file is available to two different clients, 
one may have a much worse connection to the file server, 
resulting in much greater download time compared to the other. 
Therefore, in the context of data-intensive applications, it is 
important to consider the metric of data accessibility: how 
efficiently a node can access a given data object in the system. 

B. Anusha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 1910-1922

1910



 
The challenge we address is the characterization of 

accessibility from individual client nodes in large distributed 
systems. This is complicated by the dynamics of wide-area 
networks, which rule out static a priori measurement, and the cost 
of on-demand information gathering, which rules out active 
probing. Additionally, relying on global knowledge obstructs 
scalability, so any practical approach must rely on local 
information. To achieve accessibility-aware resource selection, 
we exploit local historical data access observations. This has 
several benefits. First, it is fully scalable as it does not require 
global knowledge of the system. Second, it is inexpensive as we 
employ observations of the node itself and its directly connected 
neighbors (i.e., one-hop away). Third, past observations are 
helpful to characterize the access behavior of the node. For 
example, a node with a thin access link is likely to show slow 
access most of the time. Last, by exploiting relevant access 
information from the neighbors, it is possible to obviate the need 
for explicit probing (e.g., to determine network performance to 
the server), thus mini-mizing system and network overhead. 
 

Our key research contributions are as follows: 
 

. We present accessibility estimation heuristics which employ 
local data access observations, and demon-strate that the 
estimated data download times are fairly close to real 
measurements, with 90 percent of the estimates lying 
within 0.5 relative error in live experimentation on 
PlanetLab.  

. We infer the latency to the server based on the prior neighbor 
measurement without explicitly probing the server. For 
this, we extend existing estimation heuristics [18], [19], 
[20] to more accurately work with a limited number of 
neighbors. Our enhancement gives accurate results even 
with only a few neighbors.  

. We present accessibility-aware resource selection techniques 
based on our estimation functions and compare to the 
optimal and conventional techniques such as latency-
based and random selection. Our results indicate that our 
approach not only outper-forms the conventional 
techniques, but does so over a wide range of operating 
conditions.  

. We investigate the impact of churn prevalent in loosely 
coupled distributed systems. In fact, churn is critical to 
our resource selection techniques because we assume that 
nodes lose all past observations when they join the 
system again. Despite this stringent memory-loss 
property, the results show that our techniques perform 
well even under a certain degree of churn.  

 
2   ACCESSIBILITY-BASED RESOURCE SELECTION 
 
In this section, we present our system model followed by an 
overview of the accessibility-based resource selection algorithm 
that uses data accessibility to select appropriate compute nodes in 
the system. 

 

2.1   System Model 

 

Our system model consists of a network of compute nodes that 
provide computational resources for executing applica-tion jobs 
and data nodes that store data objects required for computation. 

In our context, data objects can be files, database records, or any 
other data representations. We assume that both compute and 
data nodes are connected in an overlay structure. We do not 
assume any specific type of organization for the overlay. It can be 
constructed by using typical overlay network architectures such 
as unstructured [21], [22] and structured [23], [24], [25], [26], or 
any other techniques. However, we assume that the system 
provides built-in functions for object store and retrieval so that 
objects can be disseminated and accessed by any node across the 
system. Each node in the network can be a compute node, data 
node, or both. 
 

Since scalability is one of our key requirements, we do not 
assume any centralized entities holding system-wide information. 
For this reason, any node in the system can submit a job in our 
system model. A job is defined as a unit of work which performs 
computation on an object. To allocate a job, a submission node, 
called an initiator selects a compute node from a set of 
candidates. We assume the use of a resource discovery 
algorithm [7], [8], [27], to determine the set of candidate nodes, 
though it may not consider data locality in its choice. Once the 
initiator selects a node, the job is transferred to the selected node, 
called a worker. The worker then downloads the data object 
required for the job from the network and performs the 
computation. When the job execution is finished, the worker 
returns the result to the initiator. 
 

Formally, job Ji is defined as a computation unit which 
requires object oi to complete the task. We assume that objects, 
e.g., oi, have already been staged in the network and perhaps 
replicated to a set of nodes Ri ¼ fr

1
i; r

2
i; :::g based upon 

projected demand. The job Ji is submitted by the initiator. From 
the given candidates C ¼ fc1; c2; :::g, the initiator selects one 
(i.e., worker 2 C) to allocate the job.  

2.2   Resource Selection  
Fig. 1 illustrates the resource selection process in our system 
model once the initiator has a set of candidate nodes to choose 
from. To select one of the given candidates, the initiator first 
queries the candidates for relevant information that can be used 
for job allocation, since there is no entity with global information 
(Fig. 1a). The candidates offer the relevant information (Fig. 1b), 
based on which, the initiator allocates the job to the selected 
worker (Fig. 1c). To incorporate the impact of data access on the 
performance of job execution, our goal is to select the best 
candidate node in terms of accessibility to a data node (server) 

holding object oi.  
Due to the decentralized nature of our system, we would like 

to make this selection without assuming any global knowledge. 
To achieve this goal, we use an accessibility-based ranking 
function to order the different candidate nodes. Since our goal is 
to maximize the efficiency of data access from the selected 
worker node, we use the expected data download time as the 
metric to quantify accessibility. Thus, given a set of candidates C 

for job Ji that requires access to object oi, each candidate node cm 

returns its accessibility accessibilitycm ðJiÞ in terms of the 

estimated download time for the object oi, and 
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Fig. 1. Accessibility-based resource selection. (a) Initiator asks accessibility estimation to candidates. (b) Candidate offers estimated accessibility 
to initiator. (c) Initiator selects the best candidate based on the reported accessibility. 
 
the initiator then selects the node with the smallest accessibility 
value. Note that since we are assuming lack of any global 
knowledge, these estimates are based on the local information 
available to the individual candidate nodes. Therefore, sometimes 
the candidate cannot provide any meaningful estimate of its 
accessibility to the required data object. In this case, the 
candidate simply returns a value of 1, indicating the lack of any 
information. The initiator would filter out such a candidate. If all 
candidates return 1, one of the candidates is randomly selected. 

Formally, the selection heuristic Hs is defined as follows: 

 
Hs  : C ! cm  such that  

accessibility
cm ð

J
iÞ ¼ n min

1;::;C ðaccessibilitycn ðJiÞÞ: 
¼ j j  

Having described the accessibility-based resource selection 
process, the question is how the candidate nodes can estimate 
their accessibility using local information (e.g., their own 
observations to the object if known or their neighbors), and what 
factors they can use for this estimation. We explore this question 
in the next section. 
 
3   ACCESSIBILITY ESTIMATION  
3.1   Accessibility Parameters  
To answer the above question, we first investigate what 
parameters would impact accessibility in terms of data download 
time. Intuitively, a node’s accessibility to a data 

 
object will depend on two main factors: the location of the data 
object with respect to the node and the node’s network 
characteristics such as its connectivity, bandwidth, and other 
networking capabilities. We have explored a variety of 
parameters to characterize these factors, and found some 
interesting correlations. For this characterization, we con-ducted 
experiments on Planet Lab [28] with 133 hosts over three weeks. 
In these experiments, eighteen 2 MB data objects were randomly 
distributed over the nodes, and over 14,000 download operations 
were carried out to form a detailed trace of data download times. 
To measure internodes latencies, an ICMP ping test was repeated 
nine times over the three-week period, and the minimal latency 
was selected to represent the latency for each pair. We next give a 
brief description of the main results of this study. 
 

The first result is the correlation of latency and download 
speed (defined as the ratio of downloaded data size and download 
time) between node pairs. Fig. 2a plots the relationship between 
RTT and download speed. We find a negative correlation ðr ¼ 

₃0:56Þ between them, indicating that smaller latency between 
client and server would lead to better performance in 
downloading. Thus, latency can be a useful factor when 
estimating accessibility between node pairs.  

In addition, we discovered a correlation between the download 
speed of a node for a given object and the past average download 
speed of the node, as shown in Fig. 2b (r ¼ 0:6). The intuition 
behind this correlation is that past download behavior may be 
helpful to characterize the node in terms of its network 
characteristics such as its con-nectivity and bandwidth. For 
example, if a node is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  2.  Correlations  of  access  parameters.  (a)  Correlation  of  RTT  and  download  speed.  (b)  Correlation  of  download  speed  and  past  average  
download speed. 
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connected to the network with a bad access link, it is almost 
certain that the node will yield low performance in data access to 
any data source. This result suggests that past download 
behavior of a node can be a useful component for 
accessibility estimation.  

Based on the statistical correlations we discovered, we next 
present estimation techniques to predict data access capabilities 
of a node for a data object. Note that we do not assume global 
knowledge of these parameters (e.g., pair-wise latencies between 
different nodes), but use hints based on local information at 
candidate nodes to get accessibility estimates. It is worth 
mentioning that it is not necessary to estimate the exact download 
time; rather our intention is to rank nodes based on accessibility 
so that we can choose a good node for job allocation. 
Nonetheless, if the estimation has little relevance to the real 
performance, then the ranking may deviate far from the desired 
choices. Hence, we require that the estimation techniques 
demonstrate sufficiently accurate results which can be bounded 
within a tolerable error range. 

 
3.2   Self-Estimation  
As described in Section 3.1, latency to the server

1
 and download 

speed of a node are useful to assess its accessibility to a data 
object. We first provide an estimation technique that uses 
historical observations made by a node during its previous 
downloads to estimate these parameters. Note that these past 
downloads can be to any objects and need not be for the object in 
question. We refer to this technique as self-estimation. 
 

To employ past observations in the estimation process, we 
assume that the node records access information it has observed. 

Suppose H
i
h is the ith download entry at host h. This entry 

includes following information: object name, object size, 
download elapsed time, server, distance to server, and time 
stamp. As a convention, we use dotð:Þ notation to refer to an 

item of the entry, for example, H
i
h:size represents the object size 

in the ith observation at host h, and jHhj denotes the number of 
observations at host h.  

We first estimate a distance factor between the node and the 
server, based on their internode latency. For this, we consider 
several related latency models for the distance metric: RTT and 
square root of RTT. These are often used in TCP studies to 
cope with congestion efficiently to improve system throughput. 
Studies of window-based [32] and rate-based [33] congestion 
control revealed that RTT and square root of RTT are inversely 
proportional to system through-put, respectively. We consider 
both latency models for the distance metric and compare them to 
see which is preferable later in this section. The mean distance of 
node h to the servers is then computed by 
 

1     XjHhj  
Distance

h  ¼ jHhj ₃ i¼1  H
i
h
:distance:

 
 

We then characterize the network characteristics of the node 
by estimating its mean download speed based on 

 
prior observations. The mean download speed of node h is 
defined as 
 
  jHhj i

 

DownSpeedh  ¼
1
₃ 

X
i1

H
hi:elapse

h:size : 
 

h
 

 jH j ¼ H
 

Using the above factors, we estimate the expected download 
time for a host h to download object o as 
 

SelfEstimhðoÞ ¼ ₃ ₃ 
sizeðoÞ 

; ð1Þ
 

DownSpeedh  

     
 

where      
 

₃ ¼ 
distance

hð
server

ð
o

ÞÞ :   
 

  Distanceh     
  

Here, sizeðoÞ means the size of object o, server ðoÞ means the 
server for object o, and distanceaðbÞ means the distance 
between nodes a and b.  

Intuitively, The parameter ₃ gives a ratio of the distance to the 

server for object o to the mean distance it has observed. Smaller ₃ 
means that the distance to the server is closer than the average 
distance, and hence, its estimated download time is likely to be 
smaller than previous downloads. The other part of (1) uses the 
mean download speed to derive the estimated download time as 
being proportional to the object size.  

To see how well self-estimation performs, we con-ducted a 
simulation with the data set mentioned earlier in this section. To 
assess the accuracy, we compute the ratio of the estimated result 
to the measured one. Thus, an estimated-to-measured ratio of 1 
means that the estimation is perfect. If the ratio is 0.5, it means an 
underestimation by a factor of 2, whereas a ratio ¼ 2 means an 
over-estimation by a factor of 2. In the simulation, the node 
attempts estimation using (1) with the observations it measured in 
the data set. The estimation was performed against all the actual 
measurements. 
 

Fig. 3 presents the estimation results of self-estimation in a 
cumulative distribution graph with the ratio of the  
estimated to the measured. As can be seen in the figure, p  

RTT shows better accuracy than the native RTT. Using p  
RTT , nearly 90 percent of the total estimations occur within a 

factor of 2 (i.e., within 0.5 and 2 in the x-axis). In contrast, the 
native RTT yields 79 percent of the total estimations within the 
same error margin. Based on this result, we make use of the 

square root of RTT as the distance metric.
2
 With this distance 

metric, we can see that a significant portion of the estimations 
occur around the ratio 1, indicating that the estimation function is 
fairly accurate. We will see in Section 4 that this level of accuracy 
is sufficient for use as a ranking function to rank different 
candidate nodes for resource selection. 
 

We then investigated the impact of the number of observations 
in estimation. For this, we traced how many estimates reside 
within a factor of 2 against the measured ones, and observed that 
self-estimation produces fairly accurate results even with a 
limited number of observations. Initially, the fraction was quite 
small (below 0.7), but  

1. For ease of exposition here, we assume each data object is located on a single 
server. However, we relax this assumption and consider data replication in our 
experiments in Section 4.9. 

 
p 

2. We set distance ¼ RTT þ 1, where RTT is in milliseconds and 1 is added to 
avoid division by zero. 
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Fig. 3. Self-estimation result. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Snapshot of DP changes. 

 
it sharply increased as more observations were made. With 10 
observations, for example, the fraction goes beyond 0.8, and 
approaches 0.9 with 20 observations. This result allows us to 
maintain a finite small number of observations (by applying a 
simple aging-out technique, for example) to achieve a certain 
degree of accuracy.  

Since self-estimation is not required to have prior observations 
for the object in question, it must first search for the server and 
then determine the network distance to it. Search is often done 
by flooding in unstructured overlays [34] or by routing messages 
in structured overlays [23], [24], [25], [26], which may introduce 
extra traffic. Distance determina-tion would require probing 
which adds additional overhead. 
 
3.3   Neighbor Estimation  
While self-estimation uses a node’s prior observations to estimate 
the accessibility to a data object, it is possible that the node may 
have only a few prior download observations (e.g., if it has 
recently joined the network), which could adversely impact the 
accuracy of its estimation. Further, as mentioned above, self-
estimation also needs to locate the object’s server and determine 
its latency to the server to get a more accurate estimation. This 
server location and probing could add additional overhead and 
latency to the resource selection. 
 

To avoid these problems, we now present an estimation 
approach that utilizes the prior download observations from a 
node’s neighbors in the network overlay for its estimation. We 
call this approach neighbor estimation. The goal of this 
approach is to avoid any active server location or probing. 
Moreover, by utilizing the neighbors’ informa-tion, it is likely to 
obtain a richer set of observations to be used for estimation. 
However, the primary challenge with using neighbor information 
is to correlate a neighbor’s download experience to the node’s 
experience given that the neighbor may be at a different location 
and may have different network characteristics from the node. 
Hence, this work is different from previous passive estimation 
work [35], [36] which exploited topological or geographical 
similarity (e.g., a same local network or a same IP prefix). Instead 
we characterize the node with respect to data access, and then 
make an estimation by correlating the characterized values to 
ones from the neighbor, thus 

 
enabling the sharing observations without any topological 
constraints between neighbors.  

To assess the downloading similarity between a candi-date 
node and a neighbor, we first define the notion of download 
power (DP) to quantify the data access capability of a node. The 
idea is that a node with higher DP is considered to be superior in 
downloading capability to a node with lower DP. We formulate 
DP for a host h as follows: 

DPh
 1

jHhj₃ Hih
i
:size h

i
:distance₃: 2  

   
 ¼ h Xi1  h:elapse ₃ H  ð  Þ 

  jH j  ¼ H    
  

Intuitively, this metric combines the metrics of download 
speed and distance defined in the previous section. As seen from 
(2), DP / download speed which is intuitive, as it captures how 
fast a node can download data in general. Further, we also have 
DP / distance to the server which implies that for the same 
download speed to a server, the download power of a node is 
considered higher if it is more distant from the server. Consider 
an example to understand this relation between download power 
and distance. Suppose two client nodes, one in the US and one in 
Asia, access data from servers located in the US. Then, if the two 
clients show the same download time for the same object, the one 
in Asia might be considered to have better downloading 
capability for more distant servers, as the US client’s download 
speed could be attributed to its locality. Hence, access over 
greater distance is given greater weight in this metric. To 
minimize the effect of download anomalies and inconsistencies, 
we compute DP as the average across its history of downloads 
from all servers. Fig. 4 shows a snapshot of DP value changes for 
10 sampled nodes. We can see that DP values become stable with 
many more observations over time. According to our observa-

tions, node DP changes of greater than ₃10 percent were less than 
1 percent of the whole. 
 
 

Now, we define a function for neighbor estimation at host h 
by using information from neighbor n for object o: 
 

NeighborEstimhðn; oÞ ¼ ₃ ₃ ₃ ₃ elapsenðoÞ; ð3Þ 
 
where  

₃ ¼ 
DP

n ; ₃ ¼ distance
hð

server
ð
o

ÞÞ 
; DPh distancenðserverðoÞÞ   
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Fig. 5. Neighbor estimation result. 
 
and elapsenðoÞ is the download time observed by the neighbor 
for the object. It is possible that the neighbor has multiple 
observations for the same object, in which case we pick the 
smallest download time as the representative.  

Intuitively, to estimate the download time for object o based 
on the information from neighbor n, this function uses the 
relevant download time of the neighbor. As a rule, the estimation 
result is the same if all conditions are equivalent to the neighbor. 

To account for differences, we employ two parameters ₃ and ₃. 
The parameter ₃ compares the down-load powers of the node and 
the neighbor for similarity. If the DP of the node is higher than 
the neighbor, the function gives smaller estimation time because 
the node is considered superior to the neighbor in terms of 

accessibility. The parameter ₃ compares the distances to the 
server, so that if the distance to the server is closer for the node 

than the neighbor’s, the resulting estimation will be smaller.
3
 

These correlations enable us to share observations between 
neighbors without any topological restrictions.  

Fig. 5 illustrates the cumulative distribution of neighbor 
estimation results. Like the simulation in self-estimation, the 
estimation was made against all the actual measure-ments with a 
relevant observation measured in any other node. In other words, 
for the measured one, an estimation was attempted for every 
single observation that any other node measured for that object. 
As seen from the figure, a substantial portion of the estimated 
values are located near the ratio 1. Nearly 84 percent of 
estimations reside within a factor of 2 of the corresponding 
measurements. This suggests that neighbor estimation 
produces useful information to rank nodes with respect to 
accessibility.  

While neighbor estimation is useful for assessment of 
accessibility, multiple neighbors can provide different 
information for the same object. For example, if three neighbors 
offer their observations to a node, there can be three estimates 
which may have different values. Thus, we need to combine these 
different estimates to obtain more accurate results. We examined 
several combination functions, such as median, truncated mean, 
and weighted mean, and observed that taking the median value 
works well even with a small number of neighbors. Given that 
the number of neighbors providing relevant observations 
 
 

3. We discuss how the server distance can be estimated without active probing 
in Section 3.4. 

 
may be limited in many cases, we believe that taking the median 
should be a good choice. Hence, combining multiple estimates is 
done by 
 

NeighborEstimhðoÞ ¼ medianðNeighborEstimhðni; oÞÞ;  
for all ni 2 N

0
, where N

0
 is a subset of the neighbor set N (N

0
 ₃ 

N), which only includes neighbor nodes offering 
NeighborEstimhðni; oÞ. 

We observed that combining multiple estimates with the 
median function significantly improves the accuracy. Although 
omitted due to space reasons, estimation with four neighbor 
observations yielded nearly 90 percent of estimates within a 
factor of 2, while it was 84 percent with a single neighbor 
observation. It becomes over 92 percent with eight neighbor 
observations.  

To realize neighbor estimation, it is necessary to gather 
information from the neighbor nodes. This can be done by on-
demand requests, background communications, or any hybrid 
form of them. Piggybacking on periodic heartbeats in the overlay 
network can be a practical option to save overhead. 

 
3.4   Inferring Server Latency without Active Probing  
While neighbor estimation requires latency to the server as a 
parameter (see (3)), we can avoid the need for active probing by 
exploiting the server latency estimates obtained from the 
neighbors themselves. If a neighbor has contacted the server, it 
could obtain the latency at that time by using a simple latency 
computation technique, e.g., the time difference between TCP 
SYN and SYNACK when perform-ing the download, and this 
latency information can be offered to the neighbor nodes. By 
utilizing the latency information observed in the neighbor nodes, 
it is possible to minimize additional overhead in estimation in 
terms of server location and pinging. 
 

According to the study in [39], a significant portion of total 
paths (>90%) satisfied the property of triangle inequality. We 
also observed that 95 percent of total paths in our data satisfied 
this property. The triangulated heuristic estimates the network 
distance based on this property. It infers latency between peers 
with a set of landmarks which hold precalculated latency 
information between the peers and themselves [20]. The basic 
idea is that the latency of node a and c may lie between 

jlatencyða; bÞ ₃ latencyðb; cÞj and latencyða; bÞ þ latency 
ðb; cÞ, where b is one of the landmarks (b 2 B). With a set of 

landmarks, it is possible to obtain a set of lower bounds (LA) and 

upper bounds (UA). If we define L ¼ maxðLAÞ and U ¼ 

minðUAÞ, then the range ½L; U& should be the tightest stretch 
with which all inferred results may agree. For the inferred value, 
Hotz [18] suggested L because it is admissible to use A* search 
heuristic, while H and all linear combinations of L are not 
admissible. Guyton and Schwartz [19] employed ðL þ UÞ=2, and 
most recently, Ng and Zhang reported U performs better than the 
others [20]. 
 

In our system model, we can use neighbors as the landmarks 
because they hold latency information both to the candidate and 
to the object server. By applying the triangulated heuristic, 
therefore, we can infer the latency between the candidate and the 
server without probing. 
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Fig. 6. Latency inference results. (a) Absolute error. (b) Relative error. 
 
However, we found that the existing heuristics are inaccurate 
with a small number of neighbors which may be common in our 
system model. Hence, we enhance the triangulated heuristic to 
account for a limited number of neighbors.  

Our approach works by handling several situations that 
contribute to inaccuracy. For example, it is possible to have L > 
U due to some outliers, for which the triangle inequal-ity does not 
hold. Consider the following situation: All but one landmark give 
reasonable latencies, but if that one gives fairly large low and 
high bounds, the expected convergence would not occur, thus 
leading to an inaccurate answer. To overcome this problem, we 

remove all Li 2 LA, which are greater than U, so we can make a 
new range that satisfies L < U. After doing so, we observed that 
taking simple mean produces much better results than the 
existing approaches.  

We also observed a problematic situation where a significant 
portion of the inferred low bounds suggest similar values, but 
high bounds have a certain degree of variance. This happens 
where node c is close to a but the landmarks are all apart from 
node a. For this, we consider a weighted mean based on 

standard deviations (₃). The intuition behind this is that if 
multiple inferred bounds suggest similar values for either low or 
high bounds, it is likely that the real latency is around that point. 
We take the weighted mean when it fails to converge due to the 
range being too wide, where picking any one of L, U, and ðL þ 
UÞ=2 is likely to be highly inaccurate. The weighted mean is 
defined as follows: 
 

L ₃ ₃1 ₃  ₃   ₃LA₃  ₃ þ U ₃ ₃1 ₃  ₃ ₃UA₃ ₃: 
ð  LA  þ UA Þ ð LA  þ UA Þ 

We report the evaluation results with the absolute error as 
well as the relative error for clarity. For example, if we think of 
two measured latencies 1 and 100 ms, and the corresponding 
estimations 2 and 200 ms, then these two estimations give the 
same picture with respect to the relative error (i.e., relative error 
¼ 1 in this example). In contrast, they convey different 
information with respect to absolute error. In fact, 1 ms 
difference is usually acceptable, but 100 ms error is not for 
latency inference.  

Fig. 6 demonstrates the inference results. As reported in [20], 
the heuristic employing U is overall better than the 

 
other two existing heuristics. However, we can see that our 
enhanced heuristic substantially outperforms the existing 
heuristics with respect to both relative and absolute error metrics. 
In particular, the enhanced heuristic works well even when the 
number of landmarks is small. Since the number of neighbors 
which can offer the relevant latency information may be limited, 
the enhanced heuristic is desirable in our design. In other words, 
it is possible to infer the latency to the server with fairly high 
accuracy even in the case where only a few neighbor nodes can 
provide relevant information. 
 
 
4   EVALUATION  
4.1   Experimental Setup  
We conducted over 100,000 actual downloading experi-ments for 
a span of five months with 241 PlanetLab nodes geographically 
distributed across the globe. For this, we deployed a Pastry [25], 
[40] network, a structured overlay based on a DHT ring. We 
distributed data objects of four sizes: 1, 2, 4, and 8 MB, over the 
network, each object with a unique key. We then generated a 
series of random queries so that the selected nodes perform 
downloading the relevant objects. Table 1 provides the details of 
the download traces. In the simulations, we use a mixture of all 
traces rather than individual traces, unless otherwise mentioned. 
 

To evaluate resource selection techniques, we design and 
implement a simulator which inputs the ping maps and the 
collective downloading traces and outputs performance results 
according to the selection algorithms. Initially, the simulator 
constructs a network in which nodes are randomly connected to 
each other with a predefined neighbor size without any locality or 
topological considerations. To 
 
 

TABLE 1 
Download Traces 
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Fig. 7. Performance over the time. 
 
minimize error due to the construction, we repeated simulations 
50 times and report the results with 95 percent confidence 
intervals as needed. After constructing the network, the simulator 
runs each resource selection algo-rithm. Initially, it constructs a 
virtual trace in which the list of candidates and the download 
time from each candidate are recorded. The candidate nodes are 
randomly chosen for each allocation. As the candidate may have 
more than one actual download record for a server, the download 
time is also randomly selected from them. The simulator then 
selects a worker based on each selection algorithm. Based on the 
selected worker, the download time is returned from the virtual 
trace. 
 

For our evaluation, we compare the resource selection 
techniques based on our estimation techniques with two 
conventional techniques: random and latency-based selec-tions. 
The following describes the resource selection techniques: 

 
.      OMNI: Optimal selection;  
.      RANDOM: Random selection;  
.      PROXIM: Latency-based selection;  
. SELF: SELF basically performs the selection by self-

estimation. One exception is that it allows the node to 
make an estimation by partial observations if it has any 

observations to the object server.
4
 This can improve 

accuracy. If no estimate is available, it performs random 
selection;  

. NEIGHBOR: NEIGHBOR performs the selection based on 
neighbor estimation. If no estimate is available, it 
performs random selection. 

 
4.2   Performance Comparison over Time  
We begin by presenting the performance comparison over time. 
Fig. 7 compares the performance over the 100,000 consecutive 
job allocations. As the default, we set both the candidate size and 
the neighbor size to 8 (and it is applied to all the following 
experiments, unless otherwise mentioned). Overall the proposed 
techniques yield good results: SELF is the best across time and 
NEIGHBOR works better than PROXIM most of the time. RANDOM 
yields poor performance 
 

sizeðoÞ 
4. This is done by a simple statistical estimator: DownSpeedh ðsÞ , where 

DownSpeedhðsÞ stands for the mean download speed from the node to the  
server. 

 
with a significant degree of variation, as expected. PROXIM is 
about three times of optimal with a relatively high degree of 
variation compared to the suggested techniques. SELF works best 
approaching about 1.4 of optimal at the end of the simulation. 
This shows that simple consideration of past access behavior in 
addition to latency greatly benefits to choose a good candidate. 
 

NEIGHBOR is poor at first, but outperforms PROXIM after 
about 6,000 simulation time steps. This is because there may be 
many more chances of random selection at first stage; after 
warming up, however, it exploits neighbor observations, leading 
to better performance. Nonetheless, NEIGHBOR shows a 
noticeable gap to SELF. This can be explained mainly by the hit 
rate on the number of relevant observations from the neighbors; 
we observed that the average number of observations was around 
2 even at the end of the simulation, while neighbor estimation 
yields stable results with more than four observations, as 
discussed in Section 3.3. Thus, NEIGHBOR could perform better 
with a higher hit rate; improving hit rate is part of our future 
work. 
 
4.3   Impact of Candidate Size  
In our system model, a set of candidate nodes is evaluated for its 
accessibility before allocating a job. We now investigate the 
impact of candidate size (jCj). Fig. 8 demonstrates the 
performance changes with respect to candidate size. In Fig. 8a, 
mean ratio to optimal increases along the candidate size. This is 
because OMNI has many more chances to see better candidates to 
choose from, resulting in the larger performance gaps. 
Nonetheless, we can see that the suggested techniques work better 
with many more candidates, making the slopes gentle compared 
to the conventional ones. Fig. 8b compares mean download time 
for the selection techniques. As seen in the figure, SELF continues 
to produce diminished elapsed times as the candidate size 
increases, yielding the best results among selection techniques. 
NEIGHBOR follows SELF with con-siderable gaps against the 
conventional techniques. Inter-estingly, PROXIM shows unstable 
results with greater fluctuation than RANDOM over the candidate 
sizes. This result indicates that the proposed techniques not 
only work better than conventional ones across candidate 
sizes, but also further improve as the candidate size 
increases. 

 
4.4   Impact of Neighbor Size  
We next investigate the impact of neighbor size on NEIGHBOR 
(the other heuristics are not affected by this parameter). Fig. 9 
shows how the selection techniques respond across the number of 
neighbors (jNj). As can be seen in the figures, increasing the 
neighbor size dramati-cally improves the performance, while the 
others make no changes as expected. For example, the average 
download time in jNj ¼ 16 is dropped to about 70 percent of the 
time for jNj ¼ 2. The ratio to optimal is also dropped from 4.0 at 
jNj ¼ 2 to 2.6 at jNj ¼ 16. This is because it has more chances to 
obtain relevant observations with many more neighbors, thus 
decreasing the possibility of random selection. This result 
suggests that NEIGHBOR will work better in environments 
where the node has connectivity with a greater number of 
neighbors. 
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Fig. 8. Impact of candidate size. (a) Mean ratio to optimal. (b) Mean download elapsed time. 
 
4.5   Impact of Data Size  
We continue to investigate how the selection techniques work 
over different data sizes. Since the size of accessed objects can 
vary depending on applications in reality, selection techniques 
should work consistently across a range of data sizes. In this 
experiment, we run the simulation with individual traces rather 
than the mixture of the traces. In Fig. 10, we can see linear 
relationship between data size and mean download time. 
However, each technique shows a different degree of slope: SELF 
and NEIGHBOR increase more gently than the conventional 

heuristics. With simple calculation, the slopes (i.e., ₃y=₃x) of the 
techniques are RANDOM = 10.9, PROXIM = 8.1, SELF = 3.8, and 
NEIGHBOR = 5.1. This result implies that the proposed 
techniques not only work consistently across different data 
sizes, but they are also much more useful for data-intensive 
applications. 

 
4.6   Timeliness  
While it is crucial to choose good nodes for job allocation, it is 
also important to avoid bad nodes when making a decision. For 
instance, selecting intolerably slow connec-tions may lead to job 
incompletion due to excessive downloading cost or time-outs. 
However, it is almost impossible to pick good nodes every time 
because there are many contributing factors. 

 
We observed how many times the techniques choose slow 

connections. Fig. 11 shows the cumulative distributions of the 
speed of connections with log-log scales, and we can see that the 
proposed techniques more often avoid slow connections. SELF 
most successfully excludes low-speed connections, and 
NEIGHBOR also performs better than the conventional techniques. 
When we count the number of poor connections selected, SELF 
chose connections under 5 KB/s less than 30 times,while PROXIM 
made more than 290 selections, which is almost an order of 
magnitude larger than SELF. One interesting result is that PROXIM 
selects poor connections more frequently than RANDOM (293 and 
194 times, respec-tively). This implies that relying only on 
latency information alone greatly increases the chance of 
very poor connections, thus leading to unpredictable 
response time. Compared to this, our proposed techniques 
successfully reduce chances to choose low speed connections by 
taking accessibility into account. 
 
4.7   Multiobject Access  
Many distributed applications request multiple objects [41], 
which means that a job of such applications accesses more than 
one object to complete the task. For example, bioinformatics 
applications such as BLAST [15] repeatedly access remote gene 
databases to compare patterns. We conducted experiments to see 
the impact of multiobject access. Fig. 12 shows the results where 
jobs require to access 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Impact of neighbor size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10. Impact of data size. 
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Fig. 11. Cumulative distribution of download speed. Fig. 12. Multiobject access.

 

  

 
multiple objects. As can be seen in the figure, the ratio to optimal 
gradually decreases with increasing number of objects for all 
selection techniques. This is because even optimally selected 
nodes may not have good performance to some objects, resulting 
in greatly increased download times. SELF and NEIGHBOR not 
only consistently outper-form the conventional techniques over 
the number of objects, but they also approach optimal (ratio = 
1.24 and 1.55 when the number of objects is 8). To sum it up, the 
suggested techniques also work better than the conven-tional 
techniques for multiobject access. 

 
4.8   Impact of Churn  
Churn is prevalent in loosely coupled distributed systems. To see 
the impact of churn, we assume that mean session lengths of 
nodes are exponentially distributed. In this context, the session 
length is equivalent to the simulation time. For example, if the 
session length of a node is 100, the node changes its status to 
inactive after 100 simulation time steps. The node then joins 
again after another 100 time steps. We assume that nodes lose all 
past observations when they change status. Therefore, churn will 
have a greater impact on our selection techniques because we rely 
on historic observa-tions. In contrast, the conventional techniques 
suffer little from churn since they do not have any dependence on 
past observations. The virtual trace excludes objects for which 
the relevant servers are inactive. We tested three mean session 
lengths: s ¼ 100, s ¼ 1;000, and s ¼ 10;000, corresponding to 
extreme, severe, and light churn rates, respectively. 
 

Fig. 13 illustrates the impact of churn. As mentioned, there is 
little impact on conventional techniques, while our techniques are 
degraded in performance due to loss of observations. In Fig. 13a, 
SELF is comparable to PROXIM even under extreme churn. 
NEIGHBOR degrades and becomes worse than PROXIM under 
severe churn (s ¼ 1;000). This is because NEIGHBOR is likely to 
fail to collect the relevant observations, thus relying more on 
random selection, while SELF can perform reasonably accurate 
estimation with only a dozen of observations. Nonetheless, 
NEIGHBOR still works better than PROXIM in light churn (s ¼ 
10;000) with lower overhead. Fig. 13b explains why NEIGHBOR 
suffers under severe and extreme churn. In the figure, the 
neighbor estimation rate means the fraction that NEIGHBOR 
success-fully estimates based on neighbor estimation rather than 
random selection. Under light churn, the neighbor estimation 

 
rate is still over 90 percent, but it drops to 60-70 percent in severe 
churn, implying that 30-40 percent of the decisions have been 
made by random selection. Under extreme churn, the neighbor 
estimation rate drops below 10 percent, so it essentially reduces to 
RANDOM.  

To summarize, the proposed techniques are fairly stable 
under churn in which nodes suffer from loss of 
observations. The result shows that SELF is comparable to 
PROXIM even under extreme churn, while NEIGHBOR is 
comparable to PROXIM when churn is light. 
 
4.9   Impact of Replication  
In loosely coupled distributed systems, replication is often used 
to disseminate objects to provide locality in data access as well as 
high availability. We investigate the impact of replication to see 
if the proposed techniques consistently work in replicated 
environments.  

For this, we construct replicated environments in which same-
sized objects in the traces are grouped according to the replication 
factor and the object in the group is considered as a replica. The 
virtual trace is then constructed based on the group of the objects. 
In detail, for all objects in the group, a randomly selected 
download time from each candidate is recorded in the virtual 
trace. The simulator then returns the download time according to 
the selected candidate and the replica server. 
 

RANDOM will work the same as in no-replication environment 
with a random function to choose both a candidate and a replica 
server. PROXIM measures latencies from every candidate to every 
server, and then the pair with the smallest latency will be selected. 
SELF is similar to PROXIM: each candidate calculates the 
accessibility for each server and reports the best one. In the case 
of NEIGHBOR, the candidate gathers all the relevant information 
from the neighbors. If it finds more than one server, Neighbor 
EstimðoÞ function is performed against each server, and then the 
best one is reported to the initiator. For both SELF and 
NEIGHBOR, the initiator finally selects the candidate with the best 
accessibility. 
 

Fig. 14 shows performance changes across replication factors 
(jRj). It is likely that the performance of all selection techniques 
improve as the replication factor increases because of data 
locality, and the result agrees with this expectation, as shown in 
Fig. 14b. PROXIM has significantly diminished mean download 
time (nearly half) under 
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Fig. 13. Impact of churn. (a) Mean download elapsed time. (b) Neighbor estimation rate. 
 
replication, but it is still worse than the proposed techniques. 
SELF and NEIGHBOR outperform the conven-tional techniques 
over all the replication factors. In Fig. 14a, we can see that SELF 
further reduces ratio to optimal as replication factor increases, 
while the others increase. NEIGHBOR widens the gap against 
conventional techniques with increasing replication factor. 
 

Next, we investigate the impact of churn in replicated 
environments. First, we fix the replication factor at 4, and observe 
the performance change over a set of mean session lengths. As 
can be seen in Fig. 15a, the results are fairly similar with the ones 
under churn in the nonreplicated environment. However, SELF is 
a little worse than PROXIM under extreme churn. NEIGHBOR is 
comparable to PROXIM under light churn, but degrades under 
severe and extreme churn as in no replication. Then we 
investigate performance sensitivity to the replication factor under 
light churn (i.e., s ¼ 10,000). As seen in Fig. 15b, SELF is much 
better than PROXIM across all replication factors. NEIGHBOR is 
fairly comparable to PROXIM under light churn despite greater 
chance of random selection. 
 

To summarize, the proposed selection techniques consistently 
outperform the conventional techniques in replicated environ-
ments. The results under churn are fairly consistent with the results 
without replication: SELF is comparable to PROXIM 

 
under severe churn and NEIGHBOR is comparable to PROXIM 
under light churn. 
 
5   RELATED WORK  
5.1   Resource Discovery and Allocation  
The work on resource discovery and allocation is closely related 
to ours. Condor [42] provides a matchmaking framework which 
provides a stateless matching service. In [7], the authors presented 
a decentralized matchmaking based on aggregation of resource 
information and Content Addressable Network (CAN) routing 
[24]. The Cluster Computing on the Fly (CCOF) project [8] seeks 
to harvest CPU cycles by using search methods in a peer-to-peer 
computing environment. SWORD [27] provides distributed 
resource discovery by a multiattribute range search against a DHT 
on which the periodic measures of each node are stored. All these 
techniques focused more on per-node characteristics of individual 
nodes, e.g., CPU, memory, disk space, network interface, etc. In 
contrast, our approach is more interested in pairwise 
characteristics for the resource selection with considerations of 
impact on end-to-end data access. SWORD [27] provides network 
coordinates as the location information by using Vivaldi [37], but 
the latency is not sufficient for bandwidth-demanding 
applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14. Performance under replicated environments. (a) Mean ratio to optimal. (b) Mean download elapsed time. 
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Fig. 15. Impact of churn under replication. (a) Replication factor = 4. (b) Mean session length ¼  10,000 (light churn). 
 
5.2   Network Performance Estimation  
Much research has been carried out in network perfor-mance 
estimation for selection problems over the past decade. To infer 
network performance, many estimators were employed. Some 
research in [35], [43], [44], [45] focused on estimating available 
bandwidth, the minimum available bandwidth of the links along 
a path. Predicting RTT [20], [37], [46], [47], [48] has also been 
extensively studied because it is a widely used metric in the 
Internet today. TCP throughput [49], [50], [51] is also a 
frequently used metric for network performance. In this paper, we 
employ accessibility to quantitatively determine data access 
capability between a pair of nodes. 
 

Network performance estimation techniques fall into three 
classes with respect to the measurement methods: active 
probing, partial probing, and passive observing. Active 
probing injects a chain of packets to measure the network 
performance. Thus, the estimation is often believed fairly 
accurate based on current network conditions, but it requires not 
only time delay but also incurs additional traffic overhead for the 
actual measurement. Meanwhile, many latency prediction 
techniques uses partial probing. These techniques infer latency of 

n
2
 pairs by OðnÞ probing. However, as latency may not be 

directly correlated to network bandwidth, selections relying only 
on latency can mislead bandwidth-demanding applications. 
Passive techniques utilize past collected observations for the 
estimation. This approach is attractive because it makes a timely 
prediction with little additional traffic. However, existing 
techniques are limited by topological regions (e.g., LANs or IP 
prefixes) for sharing observations. In contrast to this, our passive 
estimation technique, neighbor estimation, has no such 
topological or geographical constraints, and yields good accuracy, 
sufficient for the selection problems to which it has been applied. 
 
 
 
6   CONCLUSION 
 
Accessibility is a crucial concern for an increasing number of 
data-intensive applications in loosely coupled distributed systems. 
Such applications require more sophisticated resource selection 
due to bandwidth and connectivity unpredictability. In this paper, 
we presented decentralized, scalable, and efficient resource 
selection techniques based on accessibility. Our techniques rely 
only on local, historic 

 
observations, so it is possible to keep network overhead tolerable. 
We showed that our estimation techniques are sufficiently 
accurate to provide a meaningful rank order of nodes based on 
their accessibility. Our techniques outper-form conventional 
approaches and are reasonably close to the optimal selection. In 
particular, the self-estimation-based selection approached 1.4 of 
optimal over time, the neighbor estimation-based selection was 
within 2.6 of optimal with 16 neighbors, compared to a proximity-
based selection that was over three times the optimal. With 
respect to the mean elapsed time, the self- and neighbor-
estimation-based selections were, respectively, 52 and 70 percent 
more efficient than proximity-based selection. We also investi-
gated how our techniques work under node churn and showed that 
they work well under churn circumstances in which nodes suffer 
from loss of observations. Finally, we showed that our techniques 
consistently outperform conventional techniques in replicated 
environments. 
 

In this work, we focused on performance for the accessibility 
metric. The next step is to capture availability as well as 
performance to take dynamism into account. In addition to this, 
we plan to extend our work by providing system-wide 
dissemination of observations so that the node has more chances 
to see relevant observations in estimation. This is reasonable 
since neighbor estimation has no constraints on topological or 
geographical similarities to utilize observations coming from 
other nodes. 
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